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Effect of temperature on biased random walks in disordered media
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We study diffusion on an energetically disordered lattice, where each bond between sites is characterized as
a random energy barrier. In such a model it had previously been observed that the mean square displacement
is sublinear with time at early times, but eventually reaches the classical linear behavior at long times, as a
strong function of the temperature. In the current work we add the effect of directional bias in the random walk
motion, in which along one axis only, motion in one direction is assigned a higher probability while along the
opposite direction a reduced probability. We observe that for low temperatures a ballistic character dominates,
as shown by a slope of 2 in theR2 vs time plot, while at high temperatures the slope reverts to 1, manifesting
that the effect of the bias parameter is obliterated. Thus, we show that for a biased random walk diffusion may
proceed faster at lower temperatures. The details of how this crossover takes place, and the scaling law of the
crossover temperature as a function of the bias are also given.@S1063-651X~97!51207-4#

PACS number~s!: 05.40.1j, 05.60.1w
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Biased random walk is a prototype model for studies
particle diffusion in disorded solids@1,2# where kinetic prob-
lems are concerned, such as conduction, viscous flow, p
mer dynamics, etc. The characteristic of the bias implie
preferential direction for the motion, as opposed to pur
stochastic motion. The problem becomes much more c
plicated when the underlying space is not a simple latt
but contains a certain degree of randomness itself, such
for example, a rugged energy landscape model that we
cently introduced@3–5#. Every lattice site has its own energ
~usually chosen randomly, from a random number distri
tion!. Thus, the problem is not directly amenable to ex
analytical theories, except mean field arguments. In
present study we continue the investigation of such syste
with the inclusion now of the bias characteristics.

The model used here is the one used in our previous s
ies @3–5#, in which we now incorporate an external fie
~bias!. Briefly, a square lattice is generated. Each bond
tween any two sites is a barrier with a height that is ra
domly chosen from a given distribution. The height of t
barriers depends on the mean value^E& and on the disper-
sion parameters of theE distribution in the following way:

Ei j5^E&2s~x20.5! . ~1!

Herex is a random number between 0 and 1 from a unifo
random number distribution. All barriers remain unchang
~frozen! during the entire process. Diffusion is simulated
placing particles at random positions on the lattice, wh
then perform random walks. The decisions on which jum
to make are taken on the basis of the local environment.
probabilitiesPi j to jump from sitei to site j are calculated
by

Pi j5
1

z
exp~2Ei j /kT! . ~2!
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Herez is the coordination number of the lattice. Also,k is
the Boltzmann constant, which for convenience we ta
equal to 1,k51. Thus the temperature is dimensionless, a
it is measured in terms of energy units. There is also a fin
probability of remaining on the same site~no jump!, which is
given by

Pii512(
jÞ i

Pi j . ~3!

In the present work, in one of the directions, say in dire
tion y, a bias is introduced in a way that it makes it som
what easier~more probable! for the jump to take place along
the bias direction, as opposed to along the other directio
This is done by lowering the energy for a forward jump by
fixed amount, while the energy for a backward jump i
creases by the same amount. Thus the energy barriers
motion along the bias direction become

Ei j
~y!5^E&y2sy~x20.5!7

e

2
^E&y . ~4!

The minus sign pertains to the motion along the direct
of bias, while the plus sign pertains to the opposite directi
Since negative values ofEi j

(y) are not permitted,Ei j
(y) is set

equal to zero (Ei j
(y)50) in all cases when negative values a

obtained according to Eq.~4!. The direction that contains no
bias is not affected at all, and thus, the forward and
backward jumps in thex direction~the direction perpendicu
lar to the bias! have the same probability as before. In th
way the barrier~bond! energies in thex direction are defined
by an expression similar to Eq.~1!:

Ei j
~x!5^E&x2sx~x20.5! . ~5!

In the present paper both quantities^E&x5^E&y50.5.
This model has the flexibility to give each of the coordina
R29 © 1997 The American Physical Society
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of the two-dimensional lattice a different mean value of t
energy barrier̂E&x and^E&y , and a different dispersion pa
rametersx andsy . This allows one to model the motion i
more or less oriented systems, such as columnar liquid c
tals or kinetics of electrophoresis. For instance, o
dimensional motion is obtained for^E&x@^E&y andsx50.
Therefore, the algorithm permits one to have an asymme
motion in two dimensions not only due to the bias but a
when ^E&xÞ^E&y , or sxÞsy .

Our results are exhibited in the following three figures.
Fig. 1 we plot the mean square displacement,^R2&, as a
function of time for a value of the bias parametere51.8, and
several different temperatures. We include a wideT range,
from T50.05 toT51000. Because of the different regime
encountered we present this figure in two parts,~a! ~low T)
and ~b! ~high T). We observe in Fig. 1~a! that in the long
time limit all slopes reach a limiting value of 2, which is th
expected result, since this model represents a form of ba
tic motion, whereby in the presence of external field~bias!
the particle drifts with a constant velocity along the field
that ^R2&}t2. But the time it takes to reach this limitin
value is a strong function of temperature. The lower the te
perature~0.05! the longer it takes. At early times a strong
sublinear behavior is exhibited. The origin of this subline

FIG. 1. Mean square displacement^R2& as a function of time
~number of steps!, for several different temperatures,T50.05,
0.055, 0.065, 0.075, 0.09, 0.1, 0.12, 0.15, 0.18, 0.5~a!, and T
50.5, 1.0, 5, 10, 25, 100, 1000~b!, for a frozen 2D lattice of size
40031000, in log-log form. The bias parametere51.8 and the
dispersions51.0. We used 1000 realizations.
s-
-

ic
o

s-

-

r

section is the same as that observed for the simple case o
bias reported earlier by us@3–5#. The diffusing particle must
overcome some effective activation energy, which is giv
by the barrier heights that are present. At low temperatu
the particles are easily ‘‘trapped’’ in deep valleys, and spe
a considerable amount of time on the same sites, before m
ing a successful jump over a high barrier to a neighbor
site. Since the temperature is low it takes considerable t
to overcome these high barriers. But the important poin
that eventually, at longt, the limiting slope is always at-
tained, and the system is again in an ‘‘equilibrium’’ sta
This limiting slope of 2 is reached for any value ofeÞ0. But
the smaller thee value, the longer it takes for this to happe
We thus choose a relatively large value (e51.8) to speed up
this effect.

In Fig. 1~b! the temperature is progressively raised fro
T50.50 to T51000. We observe an opposite effect: t
^R2& values now decrease as the temperature is increa
More importantly, the limiting slope of 2 progressive
changes to a limiting value of 1, which is fully attained at t
highest temperatureT51000. The reason for this behavior
the following: As the temperature is progressively i
creased there is enough thermal energy to overcome bar
of any height, so that the bias effect which results in sim
taneous increase and decrease of two barriers along on
rection is not that important anymore. At infinite temperatu
the slope of theR2 line would be exactly equal to 1, as th
effect of the bias would be completely lost. Additionally,
this plot this has a consequence that the slope51 curve
would necessarily cross with the slope52 curves, as we can
clearly see.

For all curves of Fig. 1 the time it takes to reach th
limiting slope,tc , is a characteristic quantity. The questio
can immediately be raised about its dependence on the
perature. Our earlier result@3# for the case of no bias
(e50) had shown~from the tc vs 1/T plot! a regular
Arrhenius behavior. However, theR2 data were monotonic
with temperature, while here this is not the case. If we s
make this plot, we see in Fig. 2 that below a certain tempe
ture (T,0.20) we get straight lines for all cases, i.e., w
have Arrhenius behavior. AboveT.0.20 we do not get

FIG. 2. Crossover timetc ~the time after whicĥR2& becomes
linear!, as a function of 1/T for the same data as in Fig. 1 (e
51.8), with several moree values, as shown.
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Arrhenius behavior due to the thermal effect discus
above. In this plot we have also included several additio
e values,e50.1, 0.2, 0.5, 1.0, 2.5, and 5.0. In Table I w
show the slopes of the straight lines, for all these cases.
observe that fore50 we get a slope of approximately 0.
which was explained in the past to conform with the per
lation picture, aspc50.50 is the critical percolation thresh
old for bond percolation. Then, for differente values we get
slopes that are smaller than 0.5. The difference from 0.
proportional toe, i.e., the larger the bias the more different
the crossover value.

The same interpretation as in the case ofe50 @3–5#, is
also valid here, but only for the section of lowT. This sug-
gests again an expression of the form

tc5expSEef f

kT D , ~6!

leading to the semilog straight line sections of Fig. 2. T
tc values that were used in this figure were derived
the cross-point of the two straight line segments~early
time and late time! of each curve in Fig. 1. The bes
fits from linear least squares were used in each case.

TABLE I. Slopes of the straight lines of the Arrhenius plots
the crossover timestc , for several bias values investigated in Fig.

e Slope oftc

0 0.51
0.1 0.49
0.2 0.48
0.5 0.48
1.0 0.47
1.8 0.45
2.5 0.38
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first and last points to calculate the fit were chosen a
trarily, by optically estimating the departure from linear b
havior.

In Fig. 2 we also observe that eache line goes through a
tc minimum value, which corresponds to a characteris
temperature,Tmin . In order to see howTmin behaves with
the bias, we plotTmin vs e in Fig. 3. We observe that in
log-log axes we get a straight line with slope equal
0.2160.01.

In conclusion, we presented a model of inhomogene
diffusion with a directional bias. Transitions to neare
neighbors follow Boltzmann statistics. We observe a cro
over from ballistic to classical diffusion with increasing tem
perature. This is because the increasing temperature pro
sively erases the effect of the bias in this model. T
crossover transition obeys a scaling law with the bias of
walk.
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FIG. 3. Plot ofTmin vs e from the data of Fig. 2.
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