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Effect of temperature on biased random walks in disordered media
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We study diffusion on an energetically disordered lattice, where each bond between sites is characterized as
a random energy barrier. In such a model it had previously been observed that the mean square displacement
is sublinear with time at early times, but eventually reaches the classical linear behavior at long times, as a
strong function of the temperature. In the current work we add the effect of directional bias in the random walk
motion, in which along one axis only, motion in one direction is assigned a higher probability while along the
opposite direction a reduced probability. We observe that for low temperatures a ballistic character dominates,
as shown by a slope of 2 in tH@? vs time plot, while at high temperatures the slope reverts to 1, manifesting
that the effect of the bias parameter is obliterated. Thus, we show that for a biased random walk diffusion may
proceed faster at lower temperatures. The details of how this crossover takes place, and the scaling law of the
crossover temperature as a function of the bias are also di88063-651X97)51207-4

PACS numbd(s): 05.40:+j, 05.60+w

Biased random walk is a prototype model for studies ofHerez is the coordination number of the lattice. Aldojs
particle diffusion in disorded solid4,2] where kinetic prob- the Boltzmann constant, which for convenience we take
lems are concerned, such as conduction, viscous flow, polyequal to 1 k= 1. Thus the temperature is dimensionless, and
mer dynamics, etc. The characteristic of the bias implies dt is measured in terms of energy units. There is also a finite
preferential direction for the motion, as opposed to purelyprobability of remaining on the same sit® jump, which is
stochastic motion. The problem becomes much more congiven by
plicated when the underlying space is not a simple lattice,
but contains a certain degree of randomness itself, such as, p.=1-3 P, 3)
for example, a rugged energy landscape model that we re- i I
cently introduced3-5]. Every lattice site has its own energy
(usually chosen randomly, from a random number distribu- In the present work, in one of the directions, say in direc-
tion). Thus, the problem is not directly amenable to exaction y, a bias is introduced in a way that it makes it some-
analytical theories, except mean field arguments. In thevhat easiefmore probablefor the jump to take place along
present study we continue the investigation of such systemshe bias direction, as opposed to along the other directions.
with the inclusion now of the bias characteristics. This is done by lowering the energy for a forward jump by a

The model used here is the one used in our previous studixed amount, while the energy for a backward jump in-
ies [3-5], in which we now incorporate an external field creases by the same amount. Thus the energy barriers for a
(bias. Briefly, a square lattice is generated. Each bond bemotion along the bias direction become
tween any two sites is a barrier with a height that is ran-
domly chosen from a given distribution. The height of the
barriers depends on the mean vali® and on the disper-
sion parametes of the E distribution in the following way:

EY'=() -y -09T5(E)y. @

The minus sign pertains to the motion along the direction
Eij=(E)—a(x—0.5). (1)  of bias, while the plus sign pertains to the opposite direction.
Since negative values @& are not permittedE’ is set

) — i ;
Herex is a random number between 0 and 1 from a uniform@du@l to zero;”=0) in all cases when negative values are

random number distribution. All barriers remain unchangedPPtained according to Eg4). The direction that contains no
(frozen during the entire process. Diffusion is simulated by Pias is not affected at all, and thus, the forward and the
placing particles at random positions on the lattice, whichP@ckward jumps in the direction(the direction perpendicu-
then perform random walks. The decisions on which jumpd@' t0 the bias have the same probability as before. In this
to make are taken on the basis of the local environment. Th¥ay the barrie(bond energies in thex direction are defined
probabilitiesP;; to jump from sitei to sitej are calculated PY @n expression similar to EG):

by

Ef'=(E)x—0x(x—0.5). ®)

1 In the present paper both quantiti¢g),=(E),=0.5

i —E. y=0.5.
Pij Zexp( Eij /kT). @ This model has the flexibility to give each of the coordinates
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FIG. 1. Mean square displacemgi®?) as a function of time
(number of steps for several different temperature3,=0.05,
0.055, 0.065, 0.075, 0.09, 0.1, 0.12, 0.15, 0.18, @5 and T
=0.5,1.0, 5, 10, 25, 100, 100(), for a frozen 2D lattice of size
400X 1000, in log-log form. The bias parameter-1.8 and the
dispersiono=1.0. We used 1000 realizations.
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FIG. 2. Crossover time, (the time after which{R?) becomes
linean, as a function of I for the same data as in Fig. I (
=1.8), with several more values, as shown.

section is the same as that observed for the simple case of no
bias reported earlier by y8-5|. The diffusing particle must
overcome some effective activation energy, which is given
by the barrier heights that are present. At low temperatures
the particles are easily “trapped” in deep valleys, and spend
a considerable amount of time on the same sites, before mak-
ing a successful jump over a high barrier to a neighboring
site. Since the temperature is low it takes considerable time
to overcome these high barriers. But the important point is
that eventually, at lond, the limiting slope is always at-
tained, and the system is again in an “equilibrium” state.
This limiting slope of 2 is reached for any valueo# 0. But
the smaller thes value, the longer it takes for this to happen.
We thus choose a relatively large value=(1.8) to speed up
this effect.

In Fig. 1(b) the temperature is progressively raised from
T=0.50 to T=1000. We observe an opposite effect: the

of the two-dimensional lattice a different mean value of the(R?) values now decrease as the temperature is increased.
energy barrie{E), and(E),, and a different dispersion pa- More importantly, the limiting slope of 2 progressively
rametero, andoy . This allows one to model the motion in changes to a limiting value of 1, which is fully attained at the
more or less oriented systems, such as columnar liquid crysiighest temperaturé= 1000. The reason for this behavior is
tals or kinetics of electrophoresis. For instance, onethe following: As the temperature is progressively in-

dimensional motion is obtained f¢E),>(E), and o,=0.

creased there is enough thermal energy to overcome barriers

Therefore, the algorithm permits one to have an asymmetriof any height, so that the bias effect which results in simul-
motion in two dimensions not only due to the bias but alsotaneous increase and decrease of two barriers along one di-

when(E),#(E),, or ox#ay.

rection is not that important anymore. At infinite temperature

Our results are exhibited in the following three figures. Inthe slope of theR? line would be exactly equal to 1, as the

Fig. 1 we plot the mean square displaceméiR?), as a
function of time for a value of the bias parameter 1.8, and
several different temperatures. We include a wideange,

effect of the bias would be completely lost. Additionally, in
this plot this has a consequence that the siapecurve
would necessarily cross with the slop2 curves, as we can

from T=0.05 toT=1000. Because of the different regimes clearly see.

encountered we present this figure in two paf@s,(low T)
and (b) (high T). We observe in Fig. (B that in the long

For all curves of Fig. 1 the time it takes to reach this
limiting slope, 7., is a characteristic quantity. The question

time limit all slopes reach a limiting value of 2, which is the can immediately be raised about its dependence on the tem-
expected result, since this model represents a form of balliggerature. Our earlier resuft3] for the case of no bias

tic motion, whereby in the presence of external fidhg

(e=0) had shown(from the 7, vs 1/T plot) a regular

the particle drifts with a constant velocity along the field soArrhenius behavior. However, the? data were monotonic
that (R?)=t?. But the time it takes to reach this limiting with temperature, while here this is not the case. If we still
value is a strong function of temperature. The lower the temmake this plot, we see in Fig. 2 that below a certain tempera-
perature(0.05 the longer it takes. At early times a strongly ture (T<<0.20) we get straight lines for all cases, i.e., we
sublinear behavior is exhibited. The origin of this sublinearhave Arrhenius behavior. Abov&>0.20 we do not get
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TABLE I. Slopes of the straight lines of the Arrhenius plots of 10°

the crossover timets , for several bias values investigated in Fig. 2.

€ Slope oft,

0 0.51

0.1 0.49

0.2 0.48 T,

0.5 0.48

1.0 0.47

1.8 0.45 .

2.5 0.38

Arrhenius behavior due to the thermal effect discussec 10" - 5 '
above. In this plot we have also included several additional

e values,e=0.1, 0.2, 0.5, 1.0, 2.5, and 5.0. In Table | we )

show the slopes of the straight lines, for all these cases. We FIG. 3. Plot ofTpyi, vs € from the data of Fig. 2.

observe that fore=0 we get a slope of approximately 0.5, first and last points to calculate the fit were chosen arbi-
which was explained in the past to conform with the percorayily, by optically estimating the departure from linear be-
lation picture, agp.=0.50 is the critical percolation thresh- havior.
old for bond percolation. Then, for differeatvalues we get In Fig. 2 we also observe that eaeHine goes through a
slopes that are smaller than 0.5. The difference from 0.5 is, minimum value, which corresponds to a characteristic
proportional toe, i.e., the larger the bias the more different is temperatureT ,;,. In order to see how i, behaves with
the crossover value. the bias, we plofT i, vs € in Fig. 3. We observe that in
The same interpretation as in the caseeef0 [3-5], is log-log axes we get a straight line with slope equal to
also valid here, but only for the section of Iolv This sug- 0.21+0.01.

gests again an expression of the form In conclusion, we presented a model of inhomogeneous
diffusion with a directional bias. Transitions to nearest

Eeff neighbors follow Boltzmann statistics. We observe a cross-
=€ [{ T ) , (6)  over from ballistic to classical diffusion with increasing tem-

perature. This is because the increasing temperature progres-
eading (0 te semiog tigh e secions of Fig. 2 TheS(SY S he et of e biee n Whs mocel e
7. values that were used in this figure were derived g\ alk y 9
the cross-point of the two straight line segmeriearly '
time and late timg of each curve in Fig. 1. The best = We would like to acknowledge the financial support of

fits from linear least squares were used in each case. Thhe Copernicus Project No. CIPACT930105.
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